
PCLIPS: PARALLEL CLIPS

Lawrence O. HaU 1, Bonnie H. Bennett 2, and Ivan Tello

Hall & Tello: Department of Computer Science and Engineering
University of South Florida

Tampa, FL 33620
haU@csee.usf.edu

Bennett: Honeywell Technology Center
3660 Technology Driver MN65-2600

Minneapolis, MN 55418
bennett@src.honeywell.com

ABSTRACT

A parallel version of CLIPS 5.1 has been developed to run on Intel Hypercubes. The user interface
is the same as that for CLIPS with some added commands to allow for parallel calls. A complete

version of CLIPS runs on each node of the hypercube. The system has been instrumented to
display the time spent in the match, recognize, and act cycles on each node. Only rule-level
parallelism is supported. Parallel commands enable the assertion and retraction of facts to/from
remote nodes working memory.

Parallel CLIPS was used to implement a knowledge-based command, control, communications,

and intelligence (C3I) system to demonstrate the fusion of high-level, disparate sources. We
discuss the nature of the information fusion problem, our approach, and implementation. Parallel
CLIPS has also been used to run several benchmark parallel knowledge bases such as one to set up
a cafeteria. Results shown from running Parallel CLIPS with parallel knowledge base partitions
indicate that significant speed increases, including superlinear in some cases, are possible.

INTRODUCTION

Parallel CLIPS (PCLIPS) is a rule-level parallelization of the CLIPS 5.1 expert system tool. The
concentration on rule-level parallelism allows the developed system to run effectively on current
multiple instruction multiple data (MIMD) machines. PCLIPS has been tested on an Intel
Hypercube iPSC-2/386 and 1860. Our approach bears similarities in focus to research discussed in
[12, 6, 7].

In this paper, we will show an example where the match bottleneck for production systems [1, 3]
is eased by utilizing rule-level parallelism. The example involves setting up a cafeteria for different
functions and is indicative of the possibilities of performance improvement with PCLIPS [13]. A
second example of a battle management expert system provides a perspective to real world
applications in PCLIPS.

1This research partially supported by a grant from Honeywell and a grant from the Software section of the Florida

High Technology and Research Council

2Also at Graduate Programs in Software, University of St. Thomas, 2115 Summit Ave PO 4314, St. Paul, MN
55105, bhbenneu@ stthomas.edu.

356

The rest of the paper consists of a description of PC'LIPS, a section describing the knowledge
bases (and parallelization approaches) of the examples and speed-up results from running them
using PCLIPS, and a summary of experiences with parallel CLIPS.

THE PCLIPS SYSTEM

Based on experience with an early prototype, the design of the PCLIPS user interface models that
of CLIPS as much as possible. A small extension to the syntax is used to allow the user to access
working memory on each node, add/retract facts or rules to specific nodes, etc. For example, a
load command with four processors allocated now takes the form: (0 1, load "care") and (, load
"cafe"). The fast command will load files care0 to node 0 and cafel to node 1, and the second
command loads files care0, care 1, cafe2, and cafe3 onto nodes 0, 1, 2 and 3. Other commands
operate in the same way with (2, facts) bringing in the facts from node 2 and (3 7, rules) causing
the rules from processors 3 and 7 to be displayed.

After rule fLring is complete in PCLIPS, the amount of time spent by each node in the match,
recognize, and act cycles is displayed. The amounts of time are given as percentages of the overall
time, which is also displayed. Sequential timings are obtained from running PCLIPS on one node.

A complete version of CLIPS 5.1 enhanced with three parallel operations, xassert, xretract and
mxscnd, runs on each of the nodes and the host of an iPSC2 hypercube. The host node
automatically configures each of the allocated nodes without user intervention when PCLIPS is
invoked. The xassert command simply asserts a fact from one node to a remote node's working
memory. For example, (xassert 3 (example fact)) makes its assertion into the working memory of
node 3. The general form is (xassert node_number fact_to_assert). To retract a fact from a remote
working memory use (xretract node_number fact_to_retract). Both operations build a message and
cause it to be sent by the hypercube operating system. Neither command depends upon a specific
message passing hardware or software mechanism.

Long messages can take less time to send than many short messages on Intel Hypercubes [2, 8] so
mxsend0 provides the user with the capability of asserting and/or retracting multiple facts
into/from one processor to another processor. The syntax of the function is as follows: (mxsend
node_numbers). Mxsend0 needs a sequence of calls in order for it to work as desired. The fast
step in correctly building a message to be used by mxsend0 is to call the function clear_fact0. The
syntax for this function is as follows: (clear_fact). This function simply resets the buffer used by
mxsend0 to the '-' character. This character is necessary for a receiving processor to recognize the

received message was sent by using mxsend0. The second step is to actually build the message to
be sent. In order to do this, a sequence of calls to the function buildfact0 should be performed.
The syntax of buildfact0 is as follows: (buildfact action fac0. There arc four possible values for
the action variable. They are '0', '1 ', 'retract', and 'assert'. The '0' flag and 'retract' will both
cause the building of a message to retract a fact (this is done by inserting a '$' character in the
message buffer followed by fact), and' 1' and 'assert' will both cause the building of a message to
assert fact (this is done by inserting a '#' character in the message buffer followed by fact). If the
following sequence of calls is performed, (buildfact assert Hello World) (buildfact retract
PARCLIPS is fun) (buildfact assert Go Bulls!!!) (buildfact assert Save the Earth) the following
string will be created: ".--#Hello World$PARCLIPS is fun#Go Bulls!!!#Save the Earth" Finally,
the function mxsend0 can be called. Mxsend0 will send the message built to the specified
processors so that the message will be processed by the receiving processors. The call (mxsend 10
11 12), will cause the previously built message to be sent to processors 10, 11, and 12. The proper
action is taken by the receiving processors who either assert or retract facts into/from their working
memory.

357

Since PCLIPS is a research prototype, the user is free to use or misuse the parallel calls in any way
he/she chooses. No safeguards are currently provided. On the other hand, the interface is simple
and the calls straightforward. The question that comes to mind is whether they provide enough
power to enable useful speed-ups on MIMD architectures. Our current work shows that they are
suitable for obtaining useful speedups [13], if the knowledge base is paraUelized in a careful and
appropriate way.

Examples

In this section we show results from parallelizing a knowledge base and discuss a real application
for parallel expert systems. All speedups are reported as the sequential time or time on one node
divided by the time to process the same set of initial facts and obtain the same set of final facts in
parallel (Sequential Tmae/Parallel Time).

Before discussing examples, we discuss a few guidelines for parallelizing rule bases that have
become clear in the course of developing and testing PCLIPS.

Parallelizing Knowledge Bases

There are several approaches that have been taken to parallelizing knowledge bases [5, 7, 9, 11].
An important aspect is that the parallel results be equivalent to the serial results. Methods of explicit
synchronization [11] do not seem feasible until communication times are significantly reduced on
parallel machines. Hence, we have pursued serialization through rule base modification. This
means that the rules in a parallel knowledge base generated under our paradigm are not necessarily
syntactically the same as a set of sequential rules.

There are two approaches to parallelizing the rules of a specific sequential knowledge base. The

first, and most usual one, is to partition the rules independent of the types of facts they will most
likely be used with. In this approach, bottleneck rules that may need to be distributed to multiple
processors must be searched for during a sequential trace of the knowledge based system's
operation. Processors must be load balanced with an appropriate number of rules. All parallel
actions must be inserted into the right hand side of the rules. All facts will be distributed to all
nodes under this paradigm.

The second approach to paraUelizing the knowledge base is to parallelize it based upon the rules
and the expected type of facts. This approach is only feasible if a rule base may be expected to
work with one type or set of facts (with the facts themselves changing) in most cases. This
approach involves an analysis of the sequential performance of the knowledge based system with a
specific set of facts and then a parallelization of the knowledge base for a set of processors. In the
limited testing done in our work, this approach to parallelizing rules provides a greater speed-up.

Cafeteria

There are 93 rules in our version of the cafeteria knowledge base. The rules are grouped into
contexts, where an example context involves setting a table. A rule and fact partitionIng of the
cafeteria knowledge base was done with the use of xassert and xretract and a speedup of 5.5 times
was obtained using eight processors. The speedup obtained without using these functions was
6.47 times also using eight processors. Both speedups are less than linear but notice the decrease
in speedup when using xassert and xretract. The decrease in speedup is here attributed to inter-
processor communication. The time required to decode a message and assert it into working
memory is between 1-2 msec [10]. The time used to obtain the above results includes the time
required to transmit facts across to other nodes, retract/assert them into working memory, and do

358

thecompleteinferencing.A singlemessageof 1K takes 1.1 msec to process [2]. Larger messages,
however, take considerably more time to process, as shown by Boman and Roose [2]. Since, for
these partitions, the messages sent across the nodes are larger than 1Kbyte (every node
concatenates approximately 50 35-byte messages, making messages of 1.7 Kbytes that are sent
using mxsend0), and all nodes transmit their messages to the same node (messages might have to
wait on intermediate nodes and hence are blocked until memory on the destination node is available
to receive the complete message [10, 2]). It is clear from the above that communication is the
reason for the decrease in speedup.

The cafeteria knowledge base was also partitioned using 11 and 13 processors. A speedup of 11.5
was obtained using 11 processors, whereas the 13-processor partition produced a speedup of
22.85 times. A fact-based partitioning method was used to obtain both of these partitions. These
speed-ups are clearly super-linear and occur because the match percentage of time is reduced in a
non-linear fashion by this partitioning approach [13]. Due to space limitations, we will not explore
this phenomenon further but refer the reader to our technical report [4].

Finally, several two-processor partitions of cafeteria were performed partitioning the rules only. A
speedup of 2.035 times (65.99% matching, 21.11% acting) with two processors was obtained. In
this case, rules were copied to each partition unmodified, causing the assertion of facts that are
never used by the partition (since the asserted facts enable the truing of a context present in another
partition). Partitioning the facts also, the speedup obtained was 2.06 (67.41% matching, 20.26%
acting), which is only slightly higher than the speedup obtained when the facts were left intact.
Notice that this result suggests that the number of extra unnecessary facts does not significantly
affect the overall parallel execution time. A final two-processor partition was performed by
modifying the rules left in each partition so that they assert only the context facts needed in the
partition. A speedup of 2.13 times was obtained in this case.

Battle Management Expert System

The information fusion problem for battle management occurs when multiple, disparate sensor
sources are feeding an intelligence center. This intelligence center is trying to produce timely,
accurate and detailed information about both enemy and friendly forces in order for commanders to

make effective battle management decisions. The challenge to the C3I operation is to integrate
information from multiple sources in order to produce a unified, coherent account of the tactical,
operational or strategic situation.

There has recently been a vast proliferation of fixed and mobile, land- and air-based sensors using
acoustic, infrared, radar and other sensor technologies. The result of this proliferation has made

more work for the C3I operation.

Sensors can vary in a variety of dimensions including:
• Coverage Area
• Temporal Characteristics of Coverage
• Field of View

• Angle of View
• Range
• Resolution

• Update Rate
• Detection Probability
• Modality of Imagery
• Degree of Complexity/Realism of Imagery
° Type of Target Information
• Temporal Characteristics of Reports

359

Each collection system, then, gives a specialized samphng of conditions to a particular level of
detail, in specific locations, at a specific point in time, and with a particular level of accuracy. As a
result, the analyst receives information that may be incompatible, fragmentary, time-disordered,
and with gaps, inconsistencies and contradictions.

Honeywell's Combat Information Fusion Testbed (CIFT) has been developed to provide the
hardware and software environment that can support development of tools powerful enough to
assist intelligence analysts in correlating information from widely disparate sources. The current
testbcd capabilities were chosen for the context of handling three sensors: an airborne moving
target indication (MTI) radar, a standoff signal intelligence (SIGINT) system, and an unmanned
aerial vehicle (UAV) with a television camera payload. This correlation capability is fundamental
for information fusion. By integrating Honeywell's proprietary real-time blackboard architecture
(RTBA) with the proprietary spatial-temporal reasoning technique called topological representation
(TR), the testbed has been able to perform the data association task. CIFT was developed and
tested against a four-hour European scenario involving troop movement in a 40X60 km area that
was observed by an MTI radar, a SIGINT system, and a UAV. We determined the target
detections and circular error probabilities and time delay that these three systems would be expected
to make. cIFr was found to operate effectively on this data, associating reports from the different

sensors that had emanated from the sarae target.

CIFT was thenimplemented on the IntcliPSC-860 parallelprocessor[14]proci.ucingParallel-CIFT
(orParallel-CIFT).This processorhas eightparallelnodes.There are threemajor components of

the CIFT system:Geographic/Scenariodata,Blackboard ControlStructures,Spatialfrcmporal
Reasoners.

Geographic/Scenario Data: These contain the bit maps of the map overlays and the scenario-
specific operational and doctrinal data. The current scenario illustrates a Motorized Rifle Regiment
in the Fulda area of eastern Germany mobilizing for a road march. This activity includes SIGINT,
AUV (airborne unmanned vehicles with video camera payloads), and MTI (moving target indicator
radar) sensor reports to a G2 intelligence workstation. The geographic data includes overlays for
cities, primary and secondary roads, dense vegetation, and railroads.

Blackboard Control Structures: CLIPS provides the conmal and representation structures for the
blackboard control architecture. Honeywell wrote data structures and fusion rules in the CLIPS
format on a Sun workstation. These components were then parallelizcd and ported to the iPSC-
860. Three demonstrations are available: one uses only one of the nodes on the parallel processor
(this simulates a traditional serial computer for bench marking purposes), one uses two parallel
nodes, and one uses four parallel nodes.

Spatial�Temporal Reasoning: The spatial/temporal reasoner for this system is built on a four-
dimensional reasoner developed from Allen's temporal interval reasoning system. It defines the
relations that can exist between time and space events and reasons from these primary relations.

This system represents a demonstration of concept of the Parallel CIFT system, a challenging
problem in a challenging domain which effectively uses the Parallel CLIPS tool.

Current research efforts include:

Auto allocation of parallel components---This work requires some basic and

applied research. We propose using a nearest neighbor shear sort algorithm to
dynamically allocate processing tasks across multiple processors. This will balance the
load among the processors and ensure optimal performance.

36O

Demonstrate P-CIFT and extensions on Paragon--This requires three
preliminarysteps: I)Port CLIPS (theforward-chaininginferenceengine,on which P-

CIFT isbuilt)to theParagon, 2)PortP-CIFT tothe Paragon, 3)Extensions

developed toP-CIFT. See followingpoints.

• Addition of object-oriented data base (OODB) capabilities--This should be
easily completed with use of the CLIPS 6.0.

Development of a domain specific information fusion sheliBCommon
elements from a variety of information fusion applications (Honeywell currently has
Army and Navy scenarios, with plans to extend into commercial domains, medical
imaging, robotics,and electroniclibrariesspecifically,inthenextyear)willbe

formalizedand generalizedforfutureuse on othersystems.This organicgrowth of

genericcomponents willassuretheapplicability,generalityand usefulness.

Multi-hypothesis reasoningBThis will require integration of techniques for
multiple hypothesis generation, maintenance, and testing. Previous related work [15]
has demonstrated successful approaches in tasks with similar multiple assignment
requirements.New researchwould be requiredtoexamine parallelimplementation of

theseapproaches.Itislikelythata parallelapproach could be much more efficient.

• Quantification of performance results--Past work has provided demonstrations
of concept, but has provided no performance results.

SUMMARY

In this paper, we have discussed a parallel version of the CLIPS 5.1 expert system tool. The
parallel tool has a simple interface that is a direct extension of the usual CLIPS interface for parallel
use. The tool makes use of rule-level parallelism and has been tested on Intel Hypercubes.
Examples of expert systems that may be paraUelized have been shown. The major bottleneck
involves developing effective and automated methods of parallelizing knowledge bases.

The cafeteria knowledge base example shows that good speed-up is possible from just rule-level
parallelism. In fact, in the cases where both rule and fact partitioning can be done the speed-up is
super-linear in this example. It appears the approach of rule-level parallelism holds significant
promise for parallel expert system implementation on MIMD distributed memory computers.

The Parallel Combat Information Fusion Testbed represents a challenging real-world application of

Parallel CLIPS technologies.

REFERENCES

[1] Newell, A., Gupta, A., and Forgy, C. "High-Speed Implementations of Rule-Based
Systems," ACM TRANSACTIONS ON COMPUTER SYSTEMS, Vol. 7(2), 1989, pp.
119-146.

[21 Boman, L. and Roose, D. "Communication Benchmarks for the ipsc]2," PROCEEDINGS
OF THE FIRST EUROPEAN WORKSHOP ON HYPERCUBE AND DISTRIBUTED

COMPUTERS, Vol. 1, 1989, pp. 93-99.

[3] Gupta, A. PARALLELISM IN PRODUCTION SYSTEMS, Morgan-Kaufrnann Publishers,
Inc., Los Altos, CA, 1987.

361

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[111

[121

[13]

[14]

[151

Hall, L.O. and Tello, I. "Parallel Clips and the Potential of Rule-Level Parallelism," ISL-94-
71, Department of CSE, University of South Florida, Tampa, FL, 1994.

Kuo, S and Moldovan, D. "Implementation of Multiple Rule Firing Production Systems On
Hypercube," AAAI, Vol. 1, 1991, pp. 304-309.

Miranker, D. P.,Kuo, C., and Browne, J.C."ParallelizingTransformations fora

Concurrent Rule Execution Language," TR-89-30, UniversityOf Texas, Austin, 1989.

Neiman, D.E. "Parallel ops5 User's Manual and Technical Report," Department of Computer
Science and Information Science, University of Massachusetts, 1991.

Nugent, S.F. "The Ipsc/2 Direct-Connect Communications Technology,"
COMMUNICATIONS OF THE ACM, Vol. 1, 1988, pp. 51-60.

Oflazer, K., "Partitioning in Parallel Processing of Production Systems," PROCEEDINGS
OF THE 1984 CONFERENCE ON PARALLEL PROCESSING, 1984, pp. 92-100.

Prasad, L. "Parallelization of Expert Systems in the Forward Chaining Mode in the Intel
Hypercube," MS Thesis, Department of CSE, University of South Florida, Tampa, FL,
1992.

Schmolze, J.G. "Guaranteeing Serializable Results in Synchronous Parallel Production
Systems," JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, Vol. 13(4),

1991, pp. 348-365.

Schmolze, J.G. and Goel, S. "A Parallel Asynchronous Distributed Production System,"
PROCEEDINGS OF AAAI-90, 1990, pp. 65-71.

Tello, I. "Automatic Partitioning of Expert Systems for Parallel Execution on an Intel

Hypercubc," MS Thesis, Department of CSE, University of South Florida, Tampa, FL,
1994.

Bennett, B. H. "The Parallel Combat Information Fusion Testbed," Honeywell High

Performance Computing Workshop, Clearwater, FL, December 1992.

Bennett, B.H. "A Problem-solving Approach to Localization," PhD Thesis, University of
Minnesota, February 1992.

362

